
Error Messages Are Classifiers

A Process to Design and Evaluate Error Messages

John Wrenn Shriram Krishnamurthi

Brown University Brown University

October 27, 2017

Transcript

I’m John Wrenn, a PhD student at Brown University, and I hack on the
error messages of Pyret—a programming language designed expressly to
be an excellent choice for teaching, that is used by thousands of middle
schoolers, high schoolers and college students every year.

I think we’ve all been at one time or another so frustrated by an error that
we just wanted to give up computers. The fact that we’re all here today is
a testament to how forgiving—or conditioned—we are to the quirks of
software. Pyret serves audience that lacks this understanding, and we
don’t want their first experience with computing to be their last!

Needless to say, we sought out the wisdom of the ancients to design our

errors.

“

”

Writing good messages, like writing poems, essays,
or advertisements, requires experience, practice,
and a sensitivity to how the reader will react.

B. Shneiderman,
Designing Computer System Messages (1982)

1

Transcript

Computer scientists have been complaining about error messages for as
long as there have been error messages, and offered good advice on how to
improve them.

Ben Shneiderman, lamenting a lack of care taken in writing error reports,

suggested qualitative prescriptions to language developers, likening the

process to that of writing poems or essays.

“

”

1. Clarity & Brevity
2. Specificity
3. Locality
4. Proper phrasing:

4.1 Positive tone
4.2 Constructive guidance
4.3 Programmer language

J. Traver,
On Compiler Error Messages (2010)

2

Transcript

Many computer scientists have specified analytical enumerations on the

characters of “good” error reports, from JJ. Horning in 1976 who wrote an

entire chapter on writing readable messages, to Javier Traver in 2010, who

felt that good messages are, among other things, clear, brief, and positive.

Measuring the Effectiveness of Error Messages
Designed for Novice Programmers

Guillaume Marceau
WPI

100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

gmarceau@wpi.edu

Kathi Fisler
WPI

100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University
115 Waterman St

Providence, RI, USA
+1 (401) 863-7600

sk@cs.brown.edu

ABSTRACT
Good error messages are critical for novice programmers. Re-
cognizing this, the DrRacket programming environment provides
a series of pedagogically-inspired language subsets with error
messages customized to each subset. We apply human-factors
research methods to explore the effectiveness of these messages.
Unlike existing work in this area, we study messages at a fine-
grained level by analyzing the edits students make in response to
various classes of errors. We present a rubric (which is not lan-
guage specific) to evaluate student responses, apply it to a course-
worth of student lab work, and describe what we have learned
about using the rubric effectively. We also discuss some concrete
observations on the effectiveness of these messages.

Categories and Subject Descriptors K.3.2 [Computer and Edu-
cation]: Computer and Information Science Education—Computer science
education; H.5.2 [User Interfaces]: Evaluation/Methodology

General Terms Experimentation, Human Factors

Keywords Error messages, Novice programmers, User-studies

1. INTRODUCTION
In a compiler or programming environment, error messages are
one of the most important points of contact between the system
and the programmer. This is all the more critical in tools for no-
vice programmers, who lack the experience to decipher compli-
cated or poorly-constructed feedback. Thus, many research efforts
have sought to make professional compilers more suitable for
teaching by rewriting their error messages [10] or supplementing
them with hints and explanations [3]. Such efforts complement
more general research on improving error messages by means
such as error recovery during parsing.

DrRacket1 [5] goes farther. It defines several sublanguages
around what students have learned at different stages [9]. Each
sublanguage provides only (versions of) those constructs that

make sense at that point, and similarly customizes error messages.
The levels and messages have evolved over a decade of observa-
tion in lab, class, and office settings.

Despite this care, we still see novices struggle to work effectively
with the messages. To understand why, we logged students’ edits
in response to errors over an entire college-level introductory
course and coded whether the edits reflected understanding of the
error message. Our work is novel in using fine-grained data about
edits to assess the effectiveness of individual classes of error mes-
sages. Our coding rubric for assessing the performance of error
messages through edits is a key contribution of this work. Our
observations about how to use the coding results to reflect on our
course is another. Finally, we also present some concrete obser-
vations on how students respond to these messages.

2. RESPONSES TO ERROR MESSAGES
We begin by showing a few examples of student responses to
error messages during Lab #1. When Lab #1 begins, most stu-
dents have not had any contact with programming beyond four
hours of course lectures given in the days before and two short
homeworks due the day before and evening after the lab.

Figure 2 (a) shows one function (excerpted from a larger pro-
gram) submitted for execution 40 minutes after the start of the lab.
The student is defining a function label, with one argument
name. Most likely the student is missing a closing parenthesis
after name, and another one after "conservative". The nesting
suggests that the student is struggling to remember how to com-
bine two Boolean tests into one using the or operator. DrRacket
provides a textual message (lower pane) and highlights (pink in
upper pane) a code fragment that triggered the error.

Figure 2 (b) shows the student’s next edit. The student inserted
name as an argument to the function call to string=?. An ambi-
guity in the error message might have prompted this mistake: the
word “function” in the fragment “for the function's second argu-
ment” can refer to either the function being defined (label) or
the function being called (string=?). DrRacket means the for-
mer, but the student seems to have inferred the latter (perhaps
influenced by the highlighting). Our dataset illustrates several
situations in which the association of the highlight to the error text
is underspecified.

Figure 3 shows a sequence of programs that each triggered the
same error message. The topmost program was submitted first;
what follows are the student’s first four attempts to correct the
problem. The student never identifies the actual problem, which is
a missing open parenthesis before the cond. The entire sequence
lasts 10 minutes, until the end of the lab session. A few weeks

1 Formerly known as DrScheme. www.drracket.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03...$10.00.

3

Transcript

There have also been a handful of empirical studies.

Several years ago, a team of researchers at WPI and Brown—including my
co-author Shriram—set out to investigate some unexpected difficulties
students seemed to be having with Racket—a language designed expressly
to excel at teaching novices computer programming.

They recorded how students edited their programs in response to errors
and calculated—for each error type—the percent of responses that implied
an either incomplete or incorrect understanding the error report.

What they found alarmed them: among the most frequently encountered

types of errors, upwards of 50% of responses implied an incomplete or

incorrect understanding.

“

”

Writing good messages, like writing poems, essays,
or advertisements, requires experience, practice,
and a sensitivity to how the reader will react.

B. Shneiderman,
Designing Computer System Messages (1982)

4

Transcript

Is it that Racket’s designers lacked experience, practice, or a sensitivity to

how users would react?

A Cautionary Tale

“

”

1. Clarity & Brevity
2. Specificity
3. Locality
4. Proper phrasing:

4.1 Positive tone
4.2 Constructive guidance
4.3 Programmer language

J. Traver,
On Compiler Error Messages (2010)

5

Transcript

Of course not! And it’s hard to argue that they were insufficiently
principled; Racket’s messages are brief, they are consistent, they are polite,
and usually do localize the problem. They were designed with principles!

In actuality, at least two things went wrong.

First, it’s one thing to hold the principle that messages should be
“readable”, but who’s trying to write unreadable error messages? All error
messages are readable to the person who authored them.

For instance, the wording of error messages was something that Racket’s

developers had paid particularly close attention to, but but Marceau et. al

observed that novices were struggling with the vocabulary.

Principles are not Heuristics

5

Transcript

Principles are neither users, methods or measures. There must be a clear
translation between a principle to a method or measure.

Moreover, that method or measure needs to have some relationship to user

behavior.

“

”

1. This expression raised a runtime exception

2. The parser did not expect to find this

3. This expression is inconsistent with another part of the
code

4. The parser expected to see something after this, but
nothing is there

5. This parenthesis is unmatched.

6

Transcript

When an error is reported in Racket, a pink highlight is rendered over some

span of code. Like, if an expression throws an exception, you highlight it.

“

”

1. This expression raised a runtime exception

2. The parser did not expect to find this

3. This expression is inconsistent with another part of the
code

4. The parser expected to see something after this, but
nothing is there

5. This parenthesis is unmatched.

6

Transcript

Second, these researchers actually identified five distinct intentions with

which Racket’s developers used highlighting. But when users encountered

highlights, they tended applied an “edit-here” interpretation...

“

”

1. This expression raised a runtime exception

2. The parser did not expect to find this

3. This expression is inconsistent with another part of the
code

4. The parser expected to see something after this, but
nothing is there

5. This parenthesis is unmatched.

6

Transcript

...even when the message implied that the highlighted code was the only

correct part of the program! (As is often the case the parentheses that is

unmatched is highlighted.)

Intention 6= Interpretation

6

Transcript

The intention of the designers, wasn’t the interpretation that users

adopted.

Our Perspective

6

Transcript

Principles are essential for guiding the design of anything, but we want our
principled, analytic perspective to avoid these pitfalls. It should
accomodate the user’s interpretation, and it should be clearly translatable
to a concrete method and measure.

We have therefore taken a perspective that is directly informed by

Guillaume’s observation of an “edit-here” interpretation: The act of

selecting code implicitly draws the reader’s attention to those fragments

and takes attention away from the fragments not highlighted. In this

respect, error report is a classifier of code: it effectively classifies code as

“look here to start fixing the error” and “don’t look there to start fixing the

error”.

Perspective

Program

7

Transcript

And we apply this lesson more generally, too. Yes, an an error report is a

classifier of the program...

Perspective

Program

Values Constraints

7

Transcript

...but it’s also an explanation of a failure that includes things like

constraits, the values that violated them...

Perspective

Program

Values Constraints

Produces Generates

Violate

7

Transcript

...and how all of these things relate to each other, because you need to
know that to inform where you make your edit!

We want our error report—given all of the information available when the

report is produced—to be sound and complete.

Principles

8

Transcript

We want it to be sound—i.e., to not include irrelevant

information—because if users are presented with irrelevant

information—say, a highlight of an irrelevant fragment of the

program—because the user might act on that information.

Principles

> segmentation fault

8

Transcript

And we want it to be complete—to include all relevant

information—because we can’t expect that users will act on information

that they don’t have.

Method

1. Identify available information.

2. Classify information as relevant (or not).

3. Select information.

9

Transcript

This perspective implies a method for developing error messages.

We identify the information we have available...

Method

1. Identify available information.

2. Classify information as relevant (or not).

3. Select information.

9

Transcript

...judge which elements of it are relevant (or not)...

Method

1. Identify available information.

2. Classify information as relevant (or not).

3. Select information.

9

Transcript

...and ‘select’ this information by presenting it in an error report.

Measures

Soundness ≈ Precision =
|relevant ∩ selected|

|selected|

Completeness ≈ Recall =
|relevant ∩ selected|

|relevant|

10

Transcript

Moverover, our principles imply concrete, measures. Taking a page from

the the information retrieval book of tricks, we quantify the degree to

which an error report is a sound selection via precision, the fraction of

selected things which are relevant.

Measures

Soundness ≈ Precision =
|relevant ∩ selected|

|selected|

Completeness ≈ Recall =
|relevant ∩ selected|

|relevant|

10

Transcript

And we quantify the completeness of the message via recall, the fraction of

relevant things which are selected.

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"
5 print(a + b +
6 c + d)

The binary plus expression
failed on the values:

• 15

• “cat”

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

Because our goal is to improve Pyret’s error reporting, we applied this
methodology to improve errors like this one.

For the sake of demonstration, let’s say our language doesn’t permit

adding a number and a string. Something like this is pretty typical of what

a language implementor might whip up quickly and then move on to more

important things.

Program

Values Constraints

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

In our framework, the first thing we do to evaluate is actually enumerate
all the things we think are relevant.

What do we know, and is it relevant?

Constraints

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

We know that our language allows using plus for both addition and

concatenation, and that these two use cases have different constraints

associated with them.

Values

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

From how our language checks constraints, we know we will have some

values at hand when the error is detected.

Program

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

Figuring out what we know about the user’s program is a little more subtle.

We aren’t designing an error report for a particular, concrete programs;
we’re designing one for all programs that cause this error.

The key observation is that programs which cause the same types of errors

usually contain the same sort of syntactic structures...

...

Plus

Left Right

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

And we represent what we know about the commonalities of programs

with failing binary plus operations by drawing out a partial and parametric

AST. It’s partial because we’ve left large fragments of the program

unelaborated, and it’s parametric because some details about this

diagram—like just how many arguments there will be—are concretized by

the instance in which the error is actually reported.

Program

Values Constraints

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

And lastly, we need to consider how all of these types of information relate

to each other. Why are those constraints relevant? Because a plus

expression appeared in the program.

Program

Values Constraints

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

Why are those constraints relevant? Because we have some set of values

that violated them.

Program

Values Constraints

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

And to fix this error, we might need make a change that altes the values

that were ultimately produced. To do this, you need to have an

understanding of how those values were produced by terms.

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"
5 print(a + b +
6 c + d)

The binary plus expression
failed on the values:

• 15

• “cat”

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

This is a far richer—and longer—set of relevant information than was

perhaps immediately obvious.

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"
5 print(a + b +
6 c + d)

The binary plus expression
failed on the values:

• 15

• “cat”

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

And we find that it has some striking deficiencies, even if we’re generous in
what we count as ‘included’ in the message.

Our error report here doesn’t even mention that plus has these left and

right operands. It doesn’t relate the values reported in the message to

those operands. And it doesn’t mention constraints at all. This is a great

message—if you already know what you did wrong.

Recall =
|relevant ∩ selected|

|relevant|
≈ 36%

The binary plus expression
failed on the values:

• 15

• “cat”

1 Plus

2 Left

3 Right

4 Add

5 Concat

6 vLeft

7 vRight

8 Plus imposes Add

9 Plus imposes Concat

10 Add constrains vLeft

11 Add constrains vRight

12 Concat constrains Left

13 Left produces vLeft

14 Right produces vRight

11

Transcript

And these extreme deficiencies of completeness are clearly reflected if we

actually go and calculate out recall.

Building a Better Error

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"
5 print(a + b +
6 c + d

The binary plus expression failed on the val-
ues:

• 15

• “cat”

12

Transcript

But, having enumerated exactly what we hope this error message should

convey...

Building a Better Error

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"
5 print(a + b +
6 c + d

The binary plus expression failed.

The value of the left operand was:
15

The value of the right operand was:
“cat”

A binary plus expression expects that either:

• that the left operand is a string, or

• that both the left operand and right
operand are numbers.

12

Transcript

...we could use our enumeration of relevant elements to construct a new,
uber-complete message. We relate those values to the operands they came
from, and we introduce a whole new dicussion of the constraints that need
to be satisfy.

But—at least for Pyret—that’s still not enough.

This message assuming that between the gutter marker...

Building a Better Error

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"
5 print(a + b +
6 c + d

The binary plus expression failed.

The value of the left operand was:
15

The value of the right operand was:
“cat”

A binary plus expression expects that either:

• that the left operand is a string, or

• that both the left operand and right
operand are numbers.

12

Transcript

...and these three textual references to syntactic locations, you’ll know
where to look.

But what if you do not know what an “operand” is? Phrases like “left
operand” and “right operand” are going to be more frustrating than helpful.

And even if you do suss that out, this message is referencing three distinct
parts of the program, but we only have one gutter marker. And even if you
do infer that the gutter marker localizing the “binary plus expression” that
failed, not only does line 5 contain more than one + operator, but the plus
expression that failed is actually the one spread across two different lines.

But there’s a classic solution to this problem: we can follow each of these

syntactic references with a source location.

Building a Better Error

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"
5 print(a + b +
6 c + d

The binary plus expression at
some/dir/and/filename.arr:5:6-6:7
failed.

The value of the left operand at
some/dir/and/filename.arr:5:6-5:11
was:

15
The value of the right operand at
some/dir/and/filename.arr:6:6-6:7 was:

“cat”

A binary plus expression expects that either:

• that the left operand is a string, or

• that both the left operand and right
operand are numbers.

12

Transcript

...for messages that contain many references, this can dramatically
increase size of the explanatory text, not to mention it forces you to
constantly context switch between english and location notation. This is
not a message you can naturally read aloud.

In prioritizing complete information selections, we’ve ended up with many

references to syntax (even for ‘simple’ reports like this one), and our trusty

presentation mechanisms simply were not cut out for it.

Building a Better Error

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"
5 print(a + b +
6 c + d

The binary plus expression failed.

The value of the left operand was:
15

The value of the right operand was:
“cat”

A binary plus expression expects that either:

• that the left operand is a string, or

• that both the left operand and

right operand are numbers.

12

Transcript

Again, we drew inspiration from the Racket researchers. Trying to address
the issue of students not knowing the vocabulary of error messages, they
suggested that program highlighting can be applied to both the source
code and the prose of the message. Whenever the prose references
something in the program source, you highlight both that term and the
prose in the same color.

With a variation of this highlighting scheme, we were able to remove
nearly all source locations from the error reports and craft these detailed
but naturally readable diagnostics.

Moreover, we were able to reuse the same machinery we employed for

figuring out the information content of error reports to plan out

highlighting decisions.

Function

Params

Param1
. . . Paramm

Name Type Name Type

Type
Params

Name
Return
Type

Body

13

Transcript

because in following this process, we had already constructed a
representation of everything we know about the syntactic structure of the
programs: the partial and parametric AST diagram!

The edges of an AST naturally represent both a structural and syntactic

contains relationship of nodes to their children.

Function

Params

Param1
. . . Paramm

Name Type Name Type

Type
Params

Name
Return
Type

Body

13

Transcript

We can exploit this similaritiy by representing the visual scope of highlights
as a box around the subtree of the terms we want to select.

We say a node is ‘selected’ if it is within the bounds of a highlight.

...

Div

Numerator Denominator

14

Transcript

Having a notion of selection, we analyze the soundness and completeness
of these highlights over the code with precision and recall. For a
division-by- zero error, the whole expression is relevant and the
denominator is definitely relevant, but there’s no edit you can make to the
numerator that will fix this bug.

If we highlight the entire division expression...

...

Div

Numerator Denominator

Recall = 1

14

Transcript

...we achieve perfect recall...

...

Div

Numerator Denominator

Recall = 1

14

Transcript

...because both relevant terms are selected.

...

Div

Numerator Denominator

Recall = 1

14

Transcript

...but an irrelevant term is also included in the selection,

...

Div

Numerator Denominator

Precision =
2
3

14

Transcript

...and this is reflected as a loss of precision.

1 c = a + b

...

Plus

Left Right

15

Transcript

There’s one thing that looks good on paper—and when drawn over a
PAST—that doesn’t work in practice: nested highlights.

Say we’ve decided the left operand is relevant.

1 c = a + b

...

Plus

Left Right

15

Transcript

so let’s highlight that.

The right operand is relevant...

1 c = a + b

...

Plus

Left Right

15

Transcript

so we’ll highlight that, too.

And the fact that this error happens in the context of a Plus expression is

relevant

1 c = a + b

...

Plus

Left Right

15

Transcript

so let’s highlight that in blue.

This highlighting strategy seems great over an AST because the nested
structure of these highlights is clearly conveyed.

But in most text editors, the spacing between lines and characters is
something sacred, and you end up with something that looks like the three
adjacent colors, rather than a nested structure of expression and operands.

So we settled upon a rule: no nested highlights.

On-Demand Highlights

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"

5 print(a + b +

6 c + d

The binary plus expression failed.

The value of the left operand was:
15

The value of the right operand was:
“cat”

A binary plus expression expects that either:

• that the left operand is a string, or

• that both the left operand and right side
are numbers.

16

Transcript

At first glance, this restrictions seems like we need to make choices
between highlighting strategies with major tradeoffs of precision and recall.

We could highlight each of the operands of this plus,

On-Demand Highlights

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"

5 print(a + b +

6 c + d

The binary plus expression failed.

The value of the left operand was:
15

The value of the right operand was:
“cat”

A binary plus expression expects that either:

• that the left operand is a string, or

• that both the left operand and right side
are numbers.

16

Transcript

...or we could highlight the whole expression.

On-Demand Highlights

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"

5 print(a + b +

6 c + d

The binary plus expression failed.

The value of the left operand was:
15

The value of the right operand was:
“cat”

A binary plus expression expects that either:

• that the left operand is a string, or

• that both the left operand and right side
are numbers.

16

Transcript

We solve this problem by settling on some particular set of highlights that
are shown immediately

And make whatever is left over an on-demand highlight...

On-Demand Highlights

1 a = 5
2 b = 10
3 c = "cat"
4 d = "hello"

5 print(a + b +

6 c + d

The binary plus expression failed.

The value of the left operand was:
15

The value of the right operand was:
“cat”

A binary plus expression expects that either:

• that the left operand is a string, or

• that both the left operand and right side
are numbers.

16

Transcript

...a hyper-link that, when hover overed, temporarily hides the other
highlights and shows its own highlight.

By interacting with the error message, the user can now disambiguate all
of the source code references, so maybe it doesn’t make sense to calculate
recall of the highlights over the program source, because we’re not
excluding this information from the error report—they just have to ask.

So we instead guide our highlighting decisions by calculating recall over

the highlights applied to the prose of the error report. By making “binary

plus expression” an on-demand highlight, two-thirds of the references in

this prose are immediately connected to the source code, as opposed to

only one-third if made the operands on-demand highlights.

Application

Applicant Arguments

Arg1
. . . Argn

Function

Params

Param1
. . . Paramm

Name Type Name Type

Type
Params

Name
Return
Type

Body

17

Transcript

There are still ways in which we can make faulty assumptions about

error-inducing programs. If an error may involve more than one interacting

syntactic component, we may need to consider the structural relationship

between the two.

Application

Applicant Arguments

Arg1
. . . Argn

Function

Params

Param1
. . . Paramm

Name Type Name Type

Type
Params

Name
Return
Type

Body

17

Transcript

For instance: in an arity mismatch error, if we highlighted the entire

function definition, that would rule out any highlights of the application

sight, since the application could occur inside the function definition, and

that would be a nested highlight.

Application

Applicant Arguments

Arg1
. . . Argn

18

Transcript

And we are also still not completely immune from faulty lexical
assumptions. An AST is a good structure on which to plan highlights, but
doing so comes with the assumption that those nodes in the AST actually
take up space.

We might decide, for instance, to highlight each argument of an arity

mismatch error individually...

18

Transcript

But if we fail to anticipate the possibility that there could be no

arguments, you end up with a highlighted reference in the prose that has

no corresponding highlight in the program source.

18

Transcript

I applied this pipeline to contribute an overhaul of Pyret’s error reports. I

rewrote all but a few of Pyret’s 87 distinct error report types. Some error

types were insufficiently specific and broken into multiple errors; 50 new

error types now exist.

19

Transcript

This is a typical transformation.

The revised messages favored an explicit style over an implicit one. For

example, it’s more explicit which values correspond to which operands.

There was some fear that the messages were now too wordy.

20

Transcript

An emphasis on high recall and highlighting strategies that had many
distinct highlights could be visually intense. The highlighting strategy I
adopted for arity mismatch errors entailed four distinct colors.

Respectively, we feared that our revised notifications might be too much to
read, and too much to look at.

The revised notifications were previewed by teachers during August 2016.
They were received well and deployed to the public that month.

Pyret was used by several hundred students in the fall semester that

followed. We did not receive any criticisms relating to the revised

notifications, and received modest positive feedback from educators.

User Study

1. Programming

2. Survey

21

Transcript

Of course, principles are not users. If I wanted to gain any confidence that
student interactions with the revised notifications were positive and
effective, I needed to actually observe people using them.

So at the end of last semester, I conducted a preliminary study of student
sentiment and their interaction with the revised reports.

Forty-eight CS19 students participated in an optional lab section for extra

credit, during which I screen-captured their progress on two programming

problems, then administered a survey to solicit feedback regarding error

reports.

Edit Coding

“

”

Design a function called rainfall that consumes a list of
numbers representing daily rainfall amounts as entered by
a user. The list may contain the number -999 indicating
the end of the data of interest. Produce the average of the
non-negative values in the list up to the first -999 (if it shows
up). There may be negative numbers other than -999 in the
list. [Fis14, Sol86]

“
”

Design a function called argmin that consumes a list of
numbers and produces the index of the smallest number in
the list.

22

Transcript

During the programming portion, we asked students to implement two

simple functions. These problems were selected on the basis that they

could be both succinctly described and implemented, and because we

suspected that the implementation process for these problems would be

error-prone

Edit Coding

[DEL] Deletes the problematic code wholesale.
[UNR] Unrelated to the error report, and does not help.
[DIFF] Unrelated to the error report, but it correctly addresses

a different error or makes progress in some other way.
[PART] Evidence that the student has understood the error report

(though perhaps not wholly) and is trying to take an
appropriate action (though perhaps not well).

[FIX] Fixes the proximate error (though other cringing errors
might remain).

B =
[UNR] + [PART]

[FIX] + [UNR] + [PART]

[MFK11]
23

Transcript

We reviewed these recordings, and coded each edit response according to
the same rubric applied by the researchers at WPI and Brown.

Likewise, we calculated the faction of edit responses that implied an

imcomplete or incorrect understanding of the message.

Edit Coding

Phase % of Errors B

Run-time 50.5 12.3
Well-Formedness 21.9 11.4

Parse 26.2 5.4

24

Transcript

In all, 10.5% error reports were responded to poorly according to our

rubric. However, the scope of my work was mostly limited to runtime and

well-formedness errors–phases in which the program is parsable. In these

phases 12.5% received bad responses.

Error Type Phase % Errors % Bad
Test-Mismatch R 20.8 18.5
Unbound-Id R 10.2 14.3
Arity-Mismatch R 8.8 0.0
Annotation R 6.7 5.3
Field-Not-Found R 6.7 27.8
Div-By-Zero R 4.6 8.3
Shadowed-Id W 4.2 0.0
Missing-Colon P 3.9 9.1
Missing-Comma P 3.9 0.0
Empty-Block W 3.6 25.0

The letters R, W, and P, respectively denote the run-time,
well-formedness, and parsing phases of execution and compilation.

25

Transcript

We also calculated B for each type of error. Although of the of the ten

most commonly encountered types of errors, none were responded to

poorly more than 28% of the time, there’s a small number of errors that

seem to be responded to disproportionately poorly.

Error Type Phase % Errors % Bad
Test-Mismatch R 20.8 18.5
Unbound-Id R 10.2 14.3
Arity-Mismatch R 8.8 0.0
Annotation R 6.7 5.3
Field-Not-Found R 6.7 27.8
Div-By-Zero R 4.6 8.3
Shadowed-Id W 4.2 0.0
Missing-Colon P 3.9 9.1
Missing-Comma P 3.9 0.0
Empty-Block W 3.6 25.0

The letters R, W, and P, respectively denote the run-time,
well-formedness, and parsing phases of execution and compilation.

25

Transcript

In reviewing the videos, we discovered that students were encountering

difficulties with Pyret’s module system, and that these mistakes surfaced

as seemingly orthogonal Unbound-ID and Field-Not-Found errors.

Error Type Phase % Errors % Bad
Test-Mismatch R 20.8 18.5
Unbound-Id R 10.2 14.3
Arity-Mismatch R 8.8 0.0
Annotation R 6.7 5.3
Field-Not-Found R 6.7 27.8
Div-By-Zero R 4.6 8.3
Shadowed-Id W 4.2 0.0
Missing-Colon P 3.9 9.1
Missing-Comma P 3.9 0.0
Empty-Block W 3.6 25.0

The letters R, W, and P, respectively denote the run-time,
well-formedness, and parsing phases of execution and compilation.

25

Transcript

Second, we discovered that the Empty-Block error—induced by programs

in which a structure that expects to contain one or more expressions

contains no expressions...

25

Transcript

...produced a report that highlighted whatever structure immediately
preceded the actual problematic structure.

While this was fruitful for identifying some painpoints with Pyret, it did

not reveal any systemic issues with students failing to interpret messages.

Survey

1. Do you usually read error messages? Why or why not?

2. What about the error messages do you find helpful?

3. What about the error messages do you find unhelpful or
frustrating?

4. When a message refers to your code, are you usually able to
find what it is referring to?

5. Do you find the highlights in error messages helpful?

6. Do you have any further comments?

26

Transcript

Following the programming portion of the study, all participants completed
a questionairre about hteir interactions with error messages. There
responses drew on a semester’s worth of experiences with Pyret.

Across all questions, 88% of respondents (all but three) commented

positively regarding highlighting.

Survey

“ ”
I like how it highlights it in a particular color which
makes it rather easy to locate.

26

Transcript

Students enthusiastically noted the use of colors—probably the most

obvious thing distinguishing Pyret’s messages from other languages.

Survey

“ ”
They are generally verbose and allow my to under-
stand the problem.

26

Transcript

And two students specifically noted the verbosity of the error messages as

a helpful feature.

“
”

Sometimes clicking on the message (which is sup-
posed to move the code window to the appropri-
ate line) doesn’t actually move it to the right
place, though.

27

Transcript

However, students did notice, and even found it annoying when highlights

failed to work as expected.

A Very Critical Response

“

”

No I find them extremely annoying. [...]
I frequently comment out my test cases in where
blocks and forget to write nothing. The error
message when you do this is extremely confusing
and has given me several headaches because for
some reason I never remember that this always
happens.

28

Transcript

Only one student expressed only frustration regarding highlighting, and it
appears that this frustration relates to the empty-where-blcok error report,
where the entirely wrong thing is highlighted.

The takeaway from these responses is that highlights play an unusually

central role. They are attention-grabbing. They are the chief localizers.

Without them, the textual references of the message would be completely

ambiguous. So when highlights fail, in any way, it is really noticed.

Error Messages Are Classifiers
A Process to Design and Evaluate Error Messages

Jack Wrenn
me@jswrenn.com

Shriram Krishnamurthi
sk@cs.brown.edu

Transcript

This work is ongoing, these results are encouraging.

Adopting this information-centric perspective of error messages has armed

the Pyret development team with a concrete method and measure, where

previously our process was ‘write well and hope for the best’.

Error Messages Are Classifiers
A Process to Design and Evaluate Error Messages

Jack Wrenn
me@jswrenn.com

Shriram Krishnamurthi
sk@cs.brown.edu

Transcript

Coming from a tradition of terse error messages, many of us had severe
reservations of such information-dense reports and presenting them was
challening. This vibrant multi-color highlighting system let us cut out all
source locations from our error reports, and we were able to directly reuse
the machinery developed for our information-centric methodology to help
us plan these highlights out.

While we have always told our students to “read the error message”, it’s

only now that we’ve given them error messages that can actually be read

in the usual sense.

References i

Kathi Fisler, The recurring rainfall problem, Proceedings of the
Tenth Annual Conference on International Computing Education
Research (New York, NY, USA), ICER ’14, ACM, 2014,
pp. 35–42.

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi,
Measuring the effectiveness of error messages designed for novice
programmers, Special Interest Group on Computer Science
Education (New York, NY, USA), ACM, 2011, pp. 499–504.

E. Soloway, Learning to program = learning to construct
mechanisms and explanations, Commun. ACM 29 (1986), no. 9,
850–858.

30

Transcript

References ii

V. Javier Traver, On compiler error messages: What they say
and what they mean, Adv. in Hum.-Comp. Int. 2010 (2010),
3:1–3:26.

31

Transcript

	Writing Error Messages
	Qualitative
	Analytical
	Empirical Analysis

	Lessons
	Principles are not Heuristics
	Intention is not Interpretation

	A Better Approach
	Perspective
	Principles
	Method
	Measures

	A Better Approach In Action
	A Slippery Slope
	Highlights
	The European Flag Problem

